A dynamic tracer for Linux

ply.c 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. #include <assert.h>
  2. #include <errno.h>
  3. #include <stdio.h>
  4. #include <stdlib.h>
  5. #include <string.h>
  6. #include "node.h"
  7. #include "ply.h"
  8. #include "sym.h"
  9. struct providers {
  10. struct provider **ps;
  11. size_t len;
  12. } providers;
  13. #define providers_foreach(_ps, _p) \
  14. for((_p) = (_ps)->ps; (_p) < &(_ps)->ps[(_ps)->len]; (_p)++)
  15. struct provider *provider_get(const char *name)
  16. {
  17. struct provider **p;
  18. providers_foreach(&providers, p) {
  19. if (strstr((*p)->name, name) == (*p)->name)
  20. return *p;
  21. }
  22. return NULL;
  23. }
  24. void provider_register(struct provider *p)
  25. {
  26. assert(p);
  27. assert(p->probe);
  28. assert(p->sym_alloc);
  29. providers.ps = realloc(providers.ps,
  30. ++providers.len * sizeof(*providers.ps));
  31. providers.ps[providers.len - 1] = p;
  32. }
  33. struct pass {
  34. int (*run)(struct pass *, struct ctx *);
  35. nwalk_fn pre;
  36. nwalk_fn post;
  37. };
  38. struct symtab syms = { .syms = NULL, .len = 0 };
  39. /* symtab_t locals = { .sym = NULL, .len = 0 }; */
  40. struct ctx *ctx_get(void)
  41. {
  42. struct ctx *ctx;
  43. struct prog *prog;
  44. ctx = calloc(1, sizeof(*ctx));
  45. ctx->globals = calloc(1, sizeof(*ctx->globals));
  46. ctx->progs = calloc(3, sizeof(*ctx->progs));
  47. /* PROBE0 */
  48. prog = calloc(1, sizeof(*prog));
  49. prog->locals = calloc(1, sizeof(*prog->locals));
  50. prog->globals = ctx->globals;
  51. prog->probe = "k:SyS_read";
  52. /* {
  53. * @t[0] = time();
  54. * @reads[pid()] = quantize(arg2)
  55. * }
  56. */
  57. prog->ast =
  58. node_expr("{}",
  59. node_expr("=",
  60. node_expr("[]",
  61. node_ident("@t"),
  62. node_num(0),
  63. NULL),
  64. node_expr("time", NULL),
  65. NULL),
  66. node_expr("=",
  67. node_expr("[]",
  68. node_ident("@reads"),
  69. node_expr("pid", NULL),
  70. NULL),
  71. node_expr("quantize", node_ident("arg2"), NULL),
  72. NULL),
  73. NULL);
  74. prog->provider = provider_get("k");
  75. prog->provider->probe(prog);
  76. /* prog->ir = ir_new(); */
  77. ctx->progs[0] = prog;
  78. /* PROBE1 */
  79. prog = calloc(1, sizeof(*prog));
  80. prog->locals = calloc(1, sizeof(*prog->locals));
  81. prog->globals = ctx->globals;
  82. /* TODO: k -> kret */
  83. prog->probe = "k:SyS_read2";
  84. /* { @times[pid()] = quantize(time() - t0) } */
  85. prog->ast =
  86. node_expr("=",
  87. node_expr("[]",
  88. node_ident("@times"),
  89. node_expr("pid", NULL),
  90. NULL),
  91. node_expr("quantize",
  92. node_expr("-",
  93. node_expr("time", NULL),
  94. node_ident("t0"),
  95. NULL),
  96. NULL),
  97. NULL);
  98. prog->provider = provider_get("k");
  99. prog->provider->probe(prog);
  100. /* prog->ir = ir_new(); */
  101. ctx->progs[1] = prog;
  102. return ctx;
  103. }
  104. int pass_sym_alloc(struct node *n, void *_prog)
  105. {
  106. struct prog *prog = _prog;
  107. struct provider *global = provider_get(":");
  108. int err = 0;
  109. switch (n->ntype) {
  110. case N_EXPR:
  111. case N_IDENT:
  112. err = prog->provider->sym_alloc(prog, n);
  113. if (!err || (err != -ENOENT))
  114. break;
  115. err = global->sym_alloc(prog, n);
  116. break;
  117. case N_NUM:
  118. case N_STRING:
  119. err = global->sym_alloc(prog, n);
  120. }
  121. if (err) {
  122. if (n->ntype == N_EXPR)
  123. node_error(n, stderr, "unknown function '%s'",
  124. n->expr.func);
  125. else
  126. assert(0);
  127. }
  128. return err;
  129. }
  130. /* int infer_type_list(struct prog *prog, node_t *n) */
  131. /* { */
  132. /* type_t *t; */
  133. /* /\* list of lists (code block) => void *\/ */
  134. /* if (n->list->ntype == N_LIST) { */
  135. /* n->type = &t_void; */
  136. /* return 0; */
  137. /* } */
  138. /* t = n->list->type; */
  139. /* if (!t) */
  140. /* return 0; */
  141. /* switch (t->ttype) { */
  142. /* case T_FUNC: */
  143. /* n->type = t->t.func.type; */
  144. /* break; */
  145. /* default: */
  146. /* n->type = t; */
  147. /* } */
  148. /* return 0; */
  149. /* } */
  150. /* int infer_type_keyword(struct prog *prog, node_t *n) */
  151. /* { */
  152. /* node_t *dst, *src; */
  153. /* switch (n->keyword.class) { */
  154. /* case KW_ASSIGN: */
  155. /* dst = node_next(n); */
  156. /* src = node_next(dst); */
  157. /* assert(dst && src); */
  158. /* if (!src->type) */
  159. /* return 0; */
  160. /* /\* TODO: assignment is statement for now. do we need */
  161. /* * c-style assignment expressions? e.g `a = b = 2;` *\/ */
  162. /* n->type = &t_void; */
  163. /* if (dst->type) */
  164. /* return 0; */
  165. /* dst->type = src->type; */
  166. /* if (dst->ntype != N_IDENT) */
  167. /* return 0; */
  168. /* return sym_add(dst->sym->st, dst->ident, dst->type, NULL); */
  169. /* case KW_BINOP: */
  170. /* dst = node_next(n); */
  171. /* src = node_next(dst); */
  172. /* assert(dst && src); */
  173. /* if (!(src->type && dst->type && type_equal(src->type, dst->type))) */
  174. /* return 0; */
  175. /* n->type = dst->type; */
  176. /* return 0; */
  177. /* default: */
  178. /* n->type = &t_void; */
  179. /* return 0; */
  180. /* } */
  181. /* return -ENOSYS; */
  182. /* } */
  183. /* int infer_type_sym(struct prog *prog, node_t *n) */
  184. /* { */
  185. /* node_t *parent, *key; */
  186. /* if (n->sym->type) { */
  187. /* /\* the symbol type could have been inferred in another */
  188. /* * probe, in that case copy the type to this node. *\/ */
  189. /* if (!n->type) */
  190. /* n->type = n->sym->type; */
  191. /* return 0; */
  192. /* } */
  193. /* parent = node_up(n); */
  194. /* key = node_next(n); */
  195. /* /\* match `somemap[somekey]` where the type of the entire */
  196. /* * expression and the type of the key is known, since that */
  197. /* * means the type of the map itself is also known. *\/ */
  198. /* if (parent && parent->type */
  199. /* && (parent->list->ntype == N_KEYWORD) */
  200. /* && (parent->list->keyword.class == KW_SUBSCRIPT) */
  201. /* && key && key->type) { */
  202. /* n->type = type_map_of(key->type, parent->type); */
  203. /* return sym_add(n->sym->st, n->ident, n->type, NULL); */
  204. /* } */
  205. /* return 0; */
  206. /* } */
  207. /* int pass_infer_types(node_t *n, void *_prog) */
  208. /* { */
  209. /* struct prog *prog = _prog; */
  210. /* if (n->type) */
  211. /* return 0; */
  212. /* switch (n->ntype) { */
  213. /* case N_LIST: */
  214. /* return infer_type_list(prog, n); */
  215. /* case N_KEYWORD: */
  216. /* return infer_type_keyword(prog, n); */
  217. /* case N_IDENT: */
  218. /* return infer_type_sym(prog, n); */
  219. /* default: */
  220. /* break; */
  221. /* } */
  222. /* return 0; */
  223. /* } */
  224. /* int validate_func(node_t *n) */
  225. /* { */
  226. /* node_t *arg; */
  227. /* field_t *f; */
  228. /* int i; */
  229. /* for (arg = node_next(n), f = n->type->t.func.args, i = 1; */
  230. /* arg && f && f->type; arg = node_next(arg), f++, i++) { */
  231. /* if (type_compatible(arg->type, f->type)) */
  232. /* continue; */
  233. /* node_print(n, stderr); */
  234. /* fprintf(stderr, ": incompatible type of argument %d (", i); */
  235. /* type_dump(arg->type, stderr); */
  236. /* fputs("), expected ", stderr); */
  237. /* type_dump(f->type, stderr); */
  238. /* fputs("\n", stderr); */
  239. /* return -EINVAL; */
  240. /* } */
  241. /* if (!arg && (!f || !f->type)) */
  242. /* return 0; */
  243. /* if (arg) { */
  244. /* node_print(n, stderr); */
  245. /* fprintf(stderr, ": too many arguments, expected %d", i); */
  246. /* return -EINVAL; */
  247. /* } */
  248. /* if (f->optional) */
  249. /* return 0; */
  250. /* node_print(n, stderr); */
  251. /* fputs(": too few arguments", stderr); */
  252. /* return -EINVAL; */
  253. /* } */
  254. /* int pass_validate_types(node_t *n, void *_prog) */
  255. /* { */
  256. /* struct prog *prog = _prog; */
  257. /* node_print(n, stdout); putchar('\n'); */
  258. /* if (!n->type) { */
  259. /* node_print(n, stderr); */
  260. /* fputs(": type unknown\n", stderr); */
  261. /* return -EINVAL; */
  262. /* } */
  263. /* if (n->ntype != N_LIST) */
  264. /* return 0; */
  265. /* if (n->list->ntype != N_IDENT) */
  266. /* return 0; */
  267. /* assert(n->list->type->ttype == T_FUNC); */
  268. /* return validate_func(n->list); */
  269. /* } */
  270. /* int validate_syms(struct prog *prog) */
  271. /* { */
  272. /* return 0; */
  273. /* } */
  274. /* int run_validate_types(struct pass *pass, struct ctx *ctx) */
  275. /* { */
  276. /* struct prog **prog; */
  277. /* int err; */
  278. /* for (prog = ctx->progs; *prog; prog++) { */
  279. /* /\* check syms first to give better error messages. */
  280. /* * e.g. "i: type unknown", not "b-: type unknown" *\/ */
  281. /* err = validate_syms(*prog); */
  282. /* if (err) */
  283. /* return err; */
  284. /* err = node_walk((*prog)->ast, pass->pre, pass->post, *prog); */
  285. /* if (err) */
  286. /* return err; */
  287. /* } */
  288. /* return 0; */
  289. /* } */
  290. /* int rewrite_const_math(node_t *n) */
  291. /* { */
  292. /* int64_t result; */
  293. /* node_t *a, *b, *new; */
  294. /* int op; */
  295. /* /\* TODO: handle L/UL/ULL correctly *\/ */
  296. /* op = n->list->keyword.op; */
  297. /* a = node_next(n->list); */
  298. /* b = node_next(a); */
  299. /* switch (op) { */
  300. /* case '*': result = a->num * b->num; break; */
  301. /* case '/': result = a->num / b->num; break; */
  302. /* case '%': result = a->num % b->num; break; */
  303. /* case '+': result = a->num + b->num; break; */
  304. /* case '-': result = a->num - b->num; break; */
  305. /* case '<': result = a->num << b->num; break; */
  306. /* case '>': result = a->num >> b->num; break; */
  307. /* default: return 0; */
  308. /* } */
  309. /* new = node_num(result); */
  310. /* new->type = n->type; */
  311. /* return node_replace(n, new); */
  312. /* } */
  313. /* int pass_rewrite_ast(node_t *n, void *_prog) */
  314. /* { */
  315. /* struct prog *prog = _prog; */
  316. /* provider_t *global = provider_get(":"); */
  317. /* int err; */
  318. /* if (prog->provider->rewrite_node) { */
  319. /* err = prog->provider->rewrite_node(prog, n); */
  320. /* if (err) */
  321. /* return err; */
  322. /* } */
  323. /* if (global->rewrite_node) { */
  324. /* err = global->rewrite_node(prog, n); */
  325. /* if (err) */
  326. /* return err; */
  327. /* } */
  328. /* /\* pre-compute binops where both sides are constants *\/ */
  329. /* if ((n->ntype == N_LIST) */
  330. /* && (n->list->ntype == N_KEYWORD) */
  331. /* && (n->list->keyword.class == KW_BINOP) */
  332. /* && (node_next(n->list)->ntype == N_NUM) */
  333. /* && (node_next(node_next(n->list))->ntype == N_NUM)) */
  334. /* return rewrite_const_math(n); */
  335. /* return 0; */
  336. /* } */
  337. /* int generate_ir_ident(struct prog *prog, node_t *n) */
  338. /* { */
  339. /* switch (n->sym->type->ttype) { */
  340. /* case T_FUNC: */
  341. /* return n->sym->type->t.func.generate_ir(prog, n); */
  342. /* case T_MAP: */
  343. /* ir_emit_ldmap(prog->ir, BPF_REG_0, n->sym); */
  344. /* return 0; */
  345. /* default: */
  346. /* break; */
  347. /* } */
  348. /* return 0; */
  349. /* } */
  350. /* int pass_generate_ir(node_t *n, void *_prog) */
  351. /* { */
  352. /* struct prog *prog = _prog; */
  353. /* switch (n->ntype) { */
  354. /* case N_LIST: */
  355. /* return 0; */
  356. /* case N_IDENT: */
  357. /* return generate_ir_ident(prog, n); */
  358. /* default: */
  359. /* break; */
  360. /* } */
  361. /* return 0; */
  362. /* } */
  363. /* int run_generate_ir(struct pass *pass, struct ctx *ctx) */
  364. /* { */
  365. /* struct prog **progp; */
  366. /* int err; */
  367. /* for (progp = ctx->progs; *progp; progp++) { */
  368. /* struct prog *prog = *progp; */
  369. /* int return_label = ir_alloc_label(prog->ir); */
  370. /* err = prog->provider->ir_prologue ? */
  371. /* prog->provider->ir_prologue(prog) : 0; */
  372. /* if (err) */
  373. /* return err; */
  374. /* err = node_walk(prog->ast, NULL, pass_generate_ir, prog); */
  375. /* if (err) */
  376. /* return err; */
  377. /* err = prog->provider->ir_epilogue ? */
  378. /* prog->provider->ir_epilogue(prog) : 0; */
  379. /* if (err) */
  380. /* return err; */
  381. /* ir_emit_label(prog->ir, return_label); */
  382. /* ir_emit_insn(prog->ir, EXIT, 0, 0); */
  383. /* } */
  384. /* return 0; */
  385. /* } */
  386. int run_walk(struct pass *pass, struct ctx *ctx)
  387. {
  388. struct prog **prog;
  389. int err;
  390. for (prog = ctx->progs; *prog; prog++) {
  391. err = node_walk((*prog)->ast, pass->pre, pass->post, *prog);
  392. if (err)
  393. return err;
  394. }
  395. return 0;
  396. }
  397. struct pass passes[] = {
  398. { .run = run_walk, .post = pass_sym_alloc },
  399. /* { .run = run_walk, .post = pass_infer_types }, */
  400. /* { .run = run_walk, .post = pass_infer_types }, */
  401. /* { .run = run_walk, .post = pass_infer_types }, */
  402. /* { .run = run_validate_types, .post = pass_validate_types }, */
  403. /* { .run = run_walk, .post = pass_rewrite_ast }, */
  404. /* { .run = run_generate_ir }, */
  405. { NULL }
  406. };
  407. int main(void)
  408. {
  409. struct ctx *ctx = ctx_get();
  410. struct prog **prog;
  411. struct pass *pass;
  412. int err = 0;
  413. for (pass = passes; pass->run; pass++) {
  414. err = pass->run(pass, ctx);
  415. if (err)
  416. break;
  417. }
  418. for (prog = ctx->progs; *prog; prog++) {
  419. printf("\n\e[34m%s\e[0m\n", (*prog)->probe);
  420. node_dump((*prog)->ast, stdout);
  421. /* printf("\n-- locals\n"); */
  422. /* symtab_dump((*prog)->locals, stdout); */
  423. /* printf("-- ir\n"); */
  424. /* ir_dump((*prog)->ir, stdout); */
  425. }
  426. /* printf("\n\n-- globals\n"); */
  427. /* symtab_dump(ctx->globals, stdout); */
  428. if (err)
  429. printf("ERR: %d\n", err);
  430. return err;
  431. }