A dynamic tracer for Linux

ply.c 12KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. #include <assert.h>
  2. #include <errno.h>
  3. #include <stdio.h>
  4. #include <stdlib.h>
  5. #include <string.h>
  6. #include "func.h"
  7. #include "node.h"
  8. #include "ply.h"
  9. #include "sym.h"
  10. struct providers {
  11. struct provider **ps;
  12. size_t len;
  13. } providers;
  14. #define providers_foreach(_ps, _p) \
  15. for((_p) = (_ps)->ps; (_p) < &(_ps)->ps[(_ps)->len]; (_p)++)
  16. struct provider *provider_get(const char *name)
  17. {
  18. struct provider **p;
  19. providers_foreach(&providers, p) {
  20. if (strstr((*p)->name, name) == (*p)->name)
  21. return *p;
  22. }
  23. return NULL;
  24. }
  25. void provider_register(struct provider *p)
  26. {
  27. assert(p);
  28. assert(p->probe);
  29. assert(p->sym_alloc);
  30. providers.ps = realloc(providers.ps,
  31. ++providers.len * sizeof(*providers.ps));
  32. providers.ps[providers.len - 1] = p;
  33. }
  34. struct pass {
  35. int (*run)(struct pass *, struct ctx *);
  36. nwalk_fn pre;
  37. nwalk_fn post;
  38. };
  39. struct symtab syms = { .syms = NULL, .len = 0 };
  40. /* symtab_t locals = { .sym = NULL, .len = 0 }; */
  41. struct ctx *ctx_get(void)
  42. {
  43. struct ctx *ctx;
  44. struct prog *prog;
  45. ctx = calloc(1, sizeof(*ctx));
  46. ctx->globals = calloc(1, sizeof(*ctx->globals));
  47. ctx->progs = calloc(3, sizeof(*ctx->progs));
  48. /* PROBE0 */
  49. prog = calloc(1, sizeof(*prog));
  50. prog->locals = calloc(1, sizeof(*prog->locals));
  51. prog->globals = ctx->globals;
  52. prog->probe = "k:SyS_read";
  53. /* {
  54. * us = pid();
  55. * @t[0] = time();
  56. * @reads[pid()] = quantize(arg2);
  57. * }
  58. */
  59. prog->ast =
  60. node_expr(":block",
  61. node_expr(":assign",
  62. node_ident("us"),
  63. node_expr("pid", NULL),
  64. NULL),
  65. node_expr(":assign",
  66. node_expr(":map",
  67. node_ident("t"),
  68. node_num(0),
  69. NULL),
  70. node_expr("time", NULL),
  71. NULL),
  72. node_expr(":assign",
  73. node_expr(":map",
  74. node_ident("reads"),
  75. node_expr("pid", NULL),
  76. NULL),
  77. node_expr("quantize", node_ident("arg2"), NULL),
  78. NULL),
  79. NULL);
  80. prog->provider = provider_get("k");
  81. prog->provider->probe(prog);
  82. /* prog->ir = ir_new(); */
  83. ctx->progs[0] = prog;
  84. /* PROBE1 */
  85. prog = calloc(1, sizeof(*prog));
  86. prog->locals = calloc(1, sizeof(*prog->locals));
  87. prog->globals = ctx->globals;
  88. /* TODO: k -> kret */
  89. prog->probe = "k:SyS_read2";
  90. /* { @times[pid()] = quantize(time() - t0) } */
  91. prog->ast =
  92. node_expr(":assign",
  93. node_expr(":map",
  94. node_ident("times"),
  95. node_expr("pid", NULL),
  96. NULL),
  97. node_expr("quantize",
  98. node_expr("-",
  99. node_expr("time", NULL),
  100. node_ident("t0"),
  101. NULL),
  102. NULL),
  103. NULL);
  104. prog->provider = provider_get("k");
  105. prog->provider->probe(prog);
  106. /* prog->ir = ir_new(); */
  107. ctx->progs[1] = prog;
  108. return ctx;
  109. }
  110. int pass_sym_alloc(struct node *n, void *_prog)
  111. {
  112. struct prog *prog = _prog;
  113. struct provider *global = provider_get(":");
  114. int err = 0;
  115. switch (n->ntype) {
  116. case N_EXPR:
  117. case N_IDENT:
  118. err = prog->provider->sym_alloc(prog, n);
  119. if (!err || (err != -ENOENT))
  120. break;
  121. err = global->sym_alloc(prog, n);
  122. break;
  123. case N_NUM:
  124. case N_STRING:
  125. err = global->sym_alloc(prog, n);
  126. }
  127. if (err) {
  128. if ((err == -ENOENT) && (n->ntype == N_EXPR))
  129. node_error(n, stderr, "unknown function '%s'",
  130. n->expr.func);
  131. }
  132. return err;
  133. }
  134. /* int infer_type_list(struct prog *prog, struct node *n) */
  135. /* { */
  136. /* type_t *t; */
  137. /* /\* list of lists (code block) => void *\/ */
  138. /* if (n->list->ntype == N_LIST) { */
  139. /* n->type = &t_void; */
  140. /* return 0; */
  141. /* } */
  142. /* t = n->list->type; */
  143. /* if (!t) */
  144. /* return 0; */
  145. /* switch (t->ttype) { */
  146. /* case T_FUNC: */
  147. /* n->type = t->t.func.type; */
  148. /* break; */
  149. /* default: */
  150. /* n->type = t; */
  151. /* } */
  152. /* return 0; */
  153. /* } */
  154. /* int infer_type_keyword(struct prog *prog, struct node *n) */
  155. /* { */
  156. /* struct node *dst, *src; */
  157. /* switch (n->keyword.class) { */
  158. /* case KW_ASSIGN: */
  159. /* dst = node_next(n); */
  160. /* src = node_next(dst); */
  161. /* assert(dst && src); */
  162. /* if (!src->type) */
  163. /* return 0; */
  164. /* /\* TODO: assignment is statement for now. do we need */
  165. /* * c-style assignment expressions? e.g `a = b = 2;` *\/ */
  166. /* n->type = &t_void; */
  167. /* if (dst->type) */
  168. /* return 0; */
  169. /* dst->type = src->type; */
  170. /* if (dst->ntype != N_IDENT) */
  171. /* return 0; */
  172. /* return sym_add(dst->sym->st, dst->ident, dst->type, NULL); */
  173. /* case KW_BINOP: */
  174. /* dst = node_next(n); */
  175. /* src = node_next(dst); */
  176. /* assert(dst && src); */
  177. /* if (!(src->type && dst->type && type_equal(src->type, dst->type))) */
  178. /* return 0; */
  179. /* n->type = dst->type; */
  180. /* return 0; */
  181. /* default: */
  182. /* n->type = &t_void; */
  183. /* return 0; */
  184. /* } */
  185. /* return -ENOSYS; */
  186. /* } */
  187. /* int infer_type_sym(struct prog *prog, struct node *n) */
  188. /* { */
  189. /* struct node *parent, *key; */
  190. /* if (n->sym->type) { */
  191. /* /\* the symbol type could have been inferred in another */
  192. /* * probe, in that case copy the type to this node. *\/ */
  193. /* if (!n->type) */
  194. /* n->type = n->sym->type; */
  195. /* return 0; */
  196. /* } */
  197. /* parent = node_up(n); */
  198. /* key = node_next(n); */
  199. /* /\* match `somemap[somekey]` where the type of the entire */
  200. /* * expression and the type of the key is known, since that */
  201. /* * means the type of the map itself is also known. *\/ */
  202. /* if (parent && parent->type */
  203. /* && (parent->list->ntype == N_KEYWORD) */
  204. /* && (parent->list->keyword.class == KW_SUBSCRIPT) */
  205. /* && key && key->type) { */
  206. /* n->type = type_map_of(key->type, parent->type); */
  207. /* return sym_add(n->sym->st, n->ident, n->type, NULL); */
  208. /* } */
  209. /* return 0; */
  210. /* } */
  211. int pass_type_infer(struct node *n, void *_prog)
  212. {
  213. struct prog *prog = _prog;
  214. if (n->sym->func->type_infer)
  215. return n->sym->func->type_infer(prog, n);
  216. return 0;
  217. }
  218. /* int validate_func(struct node *n) */
  219. /* { */
  220. /* struct node *arg; */
  221. /* field_t *f; */
  222. /* int i; */
  223. /* for (arg = node_next(n), f = n->type->t.func.args, i = 1; */
  224. /* arg && f && f->type; arg = node_next(arg), f++, i++) { */
  225. /* if (type_compatible(arg->type, f->type)) */
  226. /* continue; */
  227. /* node_print(n, stderr); */
  228. /* fprintf(stderr, ": incompatible type of argument %d (", i); */
  229. /* type_dump(arg->type, stderr); */
  230. /* fputs("), expected ", stderr); */
  231. /* type_dump(f->type, stderr); */
  232. /* fputs("\n", stderr); */
  233. /* return -EINVAL; */
  234. /* } */
  235. /* if (!arg && (!f || !f->type)) */
  236. /* return 0; */
  237. /* if (arg) { */
  238. /* node_print(n, stderr); */
  239. /* fprintf(stderr, ": too many arguments, expected %d", i); */
  240. /* return -EINVAL; */
  241. /* } */
  242. /* if (f->optional) */
  243. /* return 0; */
  244. /* node_print(n, stderr); */
  245. /* fputs(": too few arguments", stderr); */
  246. /* return -EINVAL; */
  247. /* } */
  248. /* int pass_validate_types(struct node *n, void *_prog) */
  249. /* { */
  250. /* struct prog *prog = _prog; */
  251. /* node_print(n, stdout); putchar('\n'); */
  252. /* if (!n->type) { */
  253. /* node_print(n, stderr); */
  254. /* fputs(": type unknown\n", stderr); */
  255. /* return -EINVAL; */
  256. /* } */
  257. /* if (n->ntype != N_LIST) */
  258. /* return 0; */
  259. /* if (n->list->ntype != N_IDENT) */
  260. /* return 0; */
  261. /* assert(n->list->type->ttype == T_FUNC); */
  262. /* return validate_func(n->list); */
  263. /* } */
  264. /* int validate_syms(struct prog *prog) */
  265. /* { */
  266. /* return 0; */
  267. /* } */
  268. /* int run_validate_types(struct pass *pass, struct ctx *ctx) */
  269. /* { */
  270. /* struct prog **prog; */
  271. /* int err; */
  272. /* for (prog = ctx->progs; *prog; prog++) { */
  273. /* /\* check syms first to give better error messages. */
  274. /* * e.g. "i: type unknown", not "b-: type unknown" *\/ */
  275. /* err = validate_syms(*prog); */
  276. /* if (err) */
  277. /* return err; */
  278. /* err = node_walk((*prog)->ast, pass->pre, pass->post, *prog); */
  279. /* if (err) */
  280. /* return err; */
  281. /* } */
  282. /* return 0; */
  283. /* } */
  284. /* int rewrite_const_math(struct node *n) */
  285. /* { */
  286. /* int64_t result; */
  287. /* struct node *a, *b, *new; */
  288. /* int op; */
  289. /* /\* TODO: handle L/UL/ULL correctly *\/ */
  290. /* op = n->list->keyword.op; */
  291. /* a = node_next(n->list); */
  292. /* b = node_next(a); */
  293. /* switch (op) { */
  294. /* case '*': result = a->num * b->num; break; */
  295. /* case '/': result = a->num / b->num; break; */
  296. /* case '%': result = a->num % b->num; break; */
  297. /* case '+': result = a->num + b->num; break; */
  298. /* case '-': result = a->num - b->num; break; */
  299. /* case '<': result = a->num << b->num; break; */
  300. /* case '>': result = a->num >> b->num; break; */
  301. /* default: return 0; */
  302. /* } */
  303. /* new = node_num(result); */
  304. /* new->type = n->type; */
  305. /* return node_replace(n, new); */
  306. /* } */
  307. /* int pass_rewrite_ast(struct node *n, void *_prog) */
  308. /* { */
  309. /* struct prog *prog = _prog; */
  310. /* provider_t *global = provider_get(":"); */
  311. /* int err; */
  312. /* if (prog->provider->rewrite_node) { */
  313. /* err = prog->provider->rewrite_node(prog, n); */
  314. /* if (err) */
  315. /* return err; */
  316. /* } */
  317. /* if (global->rewrite_node) { */
  318. /* err = global->rewrite_node(prog, n); */
  319. /* if (err) */
  320. /* return err; */
  321. /* } */
  322. /* /\* pre-compute binops where both sides are constants *\/ */
  323. /* if ((n->ntype == N_LIST) */
  324. /* && (n->list->ntype == N_KEYWORD) */
  325. /* && (n->list->keyword.class == KW_BINOP) */
  326. /* && (node_next(n->list)->ntype == N_NUM) */
  327. /* && (node_next(node_next(n->list))->ntype == N_NUM)) */
  328. /* return rewrite_const_math(n); */
  329. /* return 0; */
  330. /* } */
  331. /* int generate_ir_ident(struct prog *prog, struct node *n) */
  332. /* { */
  333. /* switch (n->sym->type->ttype) { */
  334. /* case T_FUNC: */
  335. /* return n->sym->type->t.func.generate_ir(prog, n); */
  336. /* case T_MAP: */
  337. /* ir_emit_ldmap(prog->ir, BPF_REG_0, n->sym); */
  338. /* return 0; */
  339. /* default: */
  340. /* break; */
  341. /* } */
  342. /* return 0; */
  343. /* } */
  344. /* int pass_generate_ir(struct node *n, void *_prog) */
  345. /* { */
  346. /* struct prog *prog = _prog; */
  347. /* switch (n->ntype) { */
  348. /* case N_LIST: */
  349. /* return 0; */
  350. /* case N_IDENT: */
  351. /* return generate_ir_ident(prog, n); */
  352. /* default: */
  353. /* break; */
  354. /* } */
  355. /* return 0; */
  356. /* } */
  357. /* int run_generate_ir(struct pass *pass, struct ctx *ctx) */
  358. /* { */
  359. /* struct prog **progp; */
  360. /* int err; */
  361. /* for (progp = ctx->progs; *progp; progp++) { */
  362. /* struct prog *prog = *progp; */
  363. /* int return_label = ir_alloc_label(prog->ir); */
  364. /* err = prog->provider->ir_prologue ? */
  365. /* prog->provider->ir_prologue(prog) : 0; */
  366. /* if (err) */
  367. /* return err; */
  368. /* err = node_walk(prog->ast, NULL, pass_generate_ir, prog); */
  369. /* if (err) */
  370. /* return err; */
  371. /* err = prog->provider->ir_epilogue ? */
  372. /* prog->provider->ir_epilogue(prog) : 0; */
  373. /* if (err) */
  374. /* return err; */
  375. /* ir_emit_label(prog->ir, return_label); */
  376. /* ir_emit_insn(prog->ir, EXIT, 0, 0); */
  377. /* } */
  378. /* return 0; */
  379. /* } */
  380. int run_walk(struct pass *pass, struct ctx *ctx)
  381. {
  382. struct prog **prog;
  383. int err;
  384. for (prog = ctx->progs; *prog; prog++) {
  385. err = node_walk((*prog)->ast, pass->pre, pass->post, *prog);
  386. if (err)
  387. return err;
  388. }
  389. return 0;
  390. }
  391. struct pass passes[] = {
  392. { .run = run_walk, .post = pass_sym_alloc },
  393. { .run = run_walk, .post = pass_type_infer },
  394. /* { .run = run_walk, .post = pass_infer_types }, */
  395. /* { .run = run_walk, .post = pass_infer_types }, */
  396. /* { .run = run_validate_types, .post = pass_validate_types }, */
  397. /* { .run = run_walk, .post = pass_rewrite_ast }, */
  398. /* { .run = run_generate_ir }, */
  399. { NULL }
  400. };
  401. int main(void)
  402. {
  403. struct ctx *ctx = ctx_get();
  404. struct prog **prog;
  405. struct pass *pass;
  406. int err = 0;
  407. for (pass = passes; pass->run; pass++) {
  408. err = pass->run(pass, ctx);
  409. if (err)
  410. break;
  411. }
  412. for (prog = ctx->progs; *prog; prog++) {
  413. printf("\n\e[34m%s\e[0m\n", (*prog)->probe);
  414. node_dump((*prog)->ast, stdout);
  415. printf("\n-- locals\n");
  416. symtab_dump((*prog)->locals, stdout);
  417. /* printf("-- ir\n"); */
  418. /* ir_dump((*prog)->ir, stdout); */
  419. }
  420. printf("\n\n-- globals\n");
  421. symtab_dump(ctx->globals, stdout);
  422. if (err)
  423. printf("ERR: %d\n", err);
  424. return err;
  425. }