A dynamic tracer for Linux

ir.c 11KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. #include <assert.h>
  2. #include <inttypes.h>
  3. #include <stdio.h>
  4. #include <string.h>
  5. #include <linux/bpf.h>
  6. #include "ir.h"
  7. #include "ply.h"
  8. #include "sym.h"
  9. #include "type.h"
  10. const uint16_t vreg_base = 0x8000;
  11. static const char *bpf_func_name(enum bpf_func_id id)
  12. {
  13. switch (id) {
  14. case BPF_FUNC_get_current_comm:
  15. return "get_current_comm";
  16. case BPF_FUNC_get_current_pid_tgid:
  17. return "get_current_pid_tgid";
  18. case BPF_FUNC_get_current_uid_gid:
  19. return "get_current_uid_gid";
  20. case BPF_FUNC_get_stackid:
  21. return "get_stackid";
  22. case BPF_FUNC_ktime_get_ns:
  23. return "ktime_get_ns";
  24. case BPF_FUNC_map_delete_elem:
  25. return "map_delete_elem";
  26. case BPF_FUNC_map_lookup_elem:
  27. return "map_lookup_elem";
  28. case BPF_FUNC_map_update_elem:
  29. return "map_update_elem";
  30. case BPF_FUNC_perf_event_output:
  31. return "perf_event_output";
  32. case BPF_FUNC_probe_read:
  33. return "probe_read";
  34. case BPF_FUNC_trace_printk:
  35. return "trace_printk";
  36. default:
  37. return NULL;
  38. }
  39. }
  40. static void reg_name(uint16_t reg, char *name)
  41. {
  42. if (reg & vreg_base) {
  43. sprintf(name, "v%u", reg & ~vreg_base);
  44. } else if (reg == BPF_REG_10) {
  45. strcpy(name, "bp");
  46. } else {
  47. sprintf(name, "r%u", reg);
  48. }
  49. }
  50. static void reg_dump(uint16_t reg, int16_t off, FILE *fp)
  51. {
  52. char name[8];
  53. reg_name(reg, name);
  54. if (off < 0)
  55. fprintf(fp, "[%s - 0x%x]", name, -off);
  56. else if (off > 0)
  57. fprintf(fp, "[%s + 0x%x]", name, off);
  58. else
  59. fprintf(fp, "%s", name);
  60. }
  61. static char size_name(uint8_t code)
  62. {
  63. switch (BPF_SIZE(code)) {
  64. case BPF_B: return 'b';
  65. case BPF_H: return 'h';
  66. case BPF_W: return 'w';
  67. case BPF_DW: return 'q';
  68. }
  69. return '?';
  70. }
  71. static void alu_dump(uint8_t code, FILE *fp)
  72. {
  73. switch (BPF_OP(code)) {
  74. case BPF_MOV: fputs("mov", fp); break;
  75. case BPF_ADD: fputs("add", fp); break;
  76. case BPF_SUB: fputs("sub", fp); break;
  77. case BPF_MUL: fputs("mul", fp); break;
  78. case BPF_DIV: fputs("div", fp); break;
  79. case BPF_OR : fputs("or", fp); break;
  80. case BPF_AND: fputs("and", fp); break;
  81. case BPF_LSH: fputs("lsh", fp); break;
  82. case BPF_RSH: fputs("rsh", fp); break;
  83. case BPF_NEG: fputs("neg", fp); break;
  84. case BPF_MOD: fputs("mod", fp); break;
  85. case BPF_XOR: fputs("xor", fp); break;
  86. }
  87. switch (BPF_CLASS(code)) {
  88. case BPF_ALU: fputc(size_name(BPF_W), fp);
  89. case BPF_ALU64: fputc(size_name(BPF_DW), fp);
  90. }
  91. }
  92. static void offset_dump(int16_t off, FILE *fp)
  93. {
  94. if (off < 0)
  95. fprintf(fp, "L%d", -off);
  96. else
  97. fprintf(fp, "+%d", off);
  98. }
  99. static void __insn_dump(const struct bpf_insn insn, uint16_t dst, uint16_t src,
  100. FILE *fp)
  101. {
  102. const char *name;
  103. enum {
  104. OFF_NONE,
  105. OFF_DST,
  106. OFF_SRC,
  107. OFF_EXP,
  108. } off = OFF_NONE;
  109. switch (BPF_CLASS(insn.code)) {
  110. case BPF_LD:
  111. case BPF_LDX:
  112. off = OFF_SRC;
  113. fprintf(fp, "ld%c", size_name(insn.code));
  114. break;
  115. case BPF_ST:
  116. case BPF_STX:
  117. off = OFF_DST;
  118. fprintf(fp, "st%c", size_name(insn.code));
  119. break;
  120. case BPF_ALU:
  121. case BPF_ALU64:
  122. alu_dump(insn.code, fp);
  123. break;
  124. case BPF_JMP:
  125. off = OFF_EXP;
  126. switch (BPF_OP(insn.code)) {
  127. case BPF_EXIT:
  128. fputs("exit", fp);
  129. return;
  130. case BPF_CALL:
  131. fputs("call\t", fp);
  132. name = bpf_func_name(insn.imm);
  133. if (name)
  134. fputs(name, fp);
  135. else
  136. fprintf(fp, "%d", insn.imm);
  137. return;
  138. case BPF_JA:
  139. fputs("ja\t", fp);
  140. offset_dump(insn.off, fp);
  141. return;
  142. case BPF_JEQ: fputs("jeq", fp); break;
  143. case BPF_JNE: fputs("jne", fp); break;
  144. case BPF_JGT: fputs("jgt", fp); break;
  145. case BPF_JGE: fputs("jge", fp); break;
  146. case BPF_JSGE: fputs("jsge", fp); break;
  147. case BPF_JSGT: fputs("jsgt", fp); break;
  148. default:
  149. goto unknown;
  150. }
  151. break;
  152. default:
  153. goto unknown;
  154. }
  155. fputc('\t', fp);
  156. reg_dump(dst, off == OFF_DST ? insn.off : 0, fp);
  157. fputs(", ", fp);
  158. if (BPF_CLASS(insn.code) == BPF_LDX || BPF_CLASS(insn.code) == BPF_STX)
  159. goto reg_src;
  160. else if (BPF_CLASS(insn.code) == BPF_ST)
  161. goto imm_src;
  162. switch (BPF_SRC(insn.code)) {
  163. case BPF_K:
  164. imm_src:
  165. fprintf(fp, "#%s0x%x", insn.imm < 0 ? "-" : "",
  166. insn.imm < 0 ? -insn.imm : insn.imm);
  167. break;
  168. case BPF_X:
  169. reg_src:
  170. reg_dump(src, off == OFF_SRC ? insn.off : 0, fp);
  171. break;
  172. }
  173. if (off == OFF_EXP) {
  174. fputs(", ", fp);
  175. offset_dump(insn.off, fp);
  176. }
  177. return;
  178. unknown:
  179. fprintf(fp, "data\t0x%16.16" PRIx64 "\n", *((uint64_t *)&insn));
  180. }
  181. void insn_dump(struct bpf_insn insn, FILE *fp)
  182. {
  183. __insn_dump(insn, insn.dst_reg, insn.src_reg, fp);
  184. }
  185. void vinsn_dump(struct vinsn *vi, FILE *fp)
  186. {
  187. switch (vi->vitype) {
  188. case VI_INSN:
  189. __insn_dump(vi->insn.bpf, vi->insn.dst, vi->insn.src, fp);
  190. return;
  191. case VI_LDMAP:
  192. fputs("ldmap\t", fp); reg_dump(vi->map.reg, 0, fp);
  193. fprintf(fp, ", %s", vi->map.sym->name);
  194. return;
  195. case VI_LABEL:
  196. offset_dump(vi->label, fp);
  197. fputc(':', fp);
  198. return;
  199. }
  200. }
  201. void ir_dump(struct ir *ir, FILE *fp)
  202. {
  203. size_t i;
  204. for (i = 0; i < ir->len; i++) {
  205. struct vinsn *vi = &ir->vi[i];
  206. switch (vi->vitype) {
  207. case VI_INSN:
  208. case VI_LDMAP:
  209. fputc('\t', fp);
  210. break;
  211. case VI_LABEL:
  212. default:
  213. break;
  214. }
  215. vinsn_dump(vi, fp);
  216. fputc('\n', fp);
  217. }
  218. }
  219. static void ir_emit(struct ir *ir, struct vinsn *vi)
  220. {
  221. ir->vi = realloc(ir->vi, (++ir->len)*sizeof(*vi));
  222. assert(ir->vi);
  223. ir->vi[ir->len - 1] = *vi;
  224. }
  225. void ir_emit_insn(struct ir *ir, struct bpf_insn bpf, uint16_t dst, uint16_t src)
  226. {
  227. struct vinsn vi;
  228. vi.vitype = VI_INSN;
  229. vi.insn.bpf = bpf;
  230. vi.insn.dst = dst;
  231. vi.insn.src = src;
  232. ir_emit(ir, &vi);
  233. }
  234. void ir_emit_ldmap(struct ir *ir, uint16_t dst, struct sym *map)
  235. {
  236. struct vinsn vi;
  237. vi.vitype = VI_LDMAP;
  238. vi.map.reg = dst;
  239. vi.map.sym = map;
  240. ir_emit(ir, &vi);
  241. }
  242. void ir_emit_label (struct ir *ir, int16_t label)
  243. {
  244. struct vinsn vi;
  245. vi.vitype = VI_LABEL;
  246. vi.label = label;
  247. ir_emit(ir, &vi);
  248. }
  249. void ir_emit_sym_to_reg(struct ir *ir, uint16_t dst, struct sym *src)
  250. {
  251. struct irstate *irs = &src->irs;
  252. switch (irs->loc) {
  253. case LOC_IMM:
  254. ir_emit_insn(ir, MOV_IMM(irs->imm), dst, 0);
  255. break;
  256. case LOC_REG:
  257. if (dst == irs->reg)
  258. break;
  259. if (irs->size == 8)
  260. ir_emit_insn(ir, MOV64, dst, irs->reg);
  261. else
  262. ir_emit_insn(ir, MOV, dst, irs->reg);
  263. break;
  264. case LOC_STACK:
  265. ir_emit_insn(ir, LDX(bpf_width(irs->size), irs->stack),
  266. dst, BPF_REG_BP);
  267. break;
  268. default:
  269. assert(0);
  270. }
  271. }
  272. void ir_emit_reg_to_sym(struct ir *ir, struct sym *dst, uint16_t src)
  273. {
  274. struct irstate *irs = &dst->irs;
  275. switch (irs->loc) {
  276. case LOC_REG:
  277. if (irs->reg == src)
  278. break;
  279. if (irs->size == 8)
  280. ir_emit_insn(ir, MOV64, irs->reg, src);
  281. else
  282. ir_emit_insn(ir, MOV, irs->reg, src);
  283. break;
  284. case LOC_STACK:
  285. ir_emit_insn(ir, STX(bpf_width(irs->size), irs->stack),
  286. BPF_REG_BP, src);
  287. break;
  288. default:
  289. assert(0);
  290. }
  291. }
  292. void ir_emit_sym_to_stack(struct ir *ir, ssize_t offset, struct sym *src)
  293. {
  294. struct irstate *irs = &src->irs;
  295. switch (irs->loc) {
  296. case LOC_IMM:
  297. ir_emit_insn(ir, ST_IMM(bpf_width(irs->size), offset, irs->imm),
  298. BPF_REG_BP, 0);
  299. break;
  300. case LOC_REG:
  301. ir_emit_insn(ir, STX(bpf_width(irs->size), offset),
  302. BPF_REG_BP, irs->reg);
  303. case LOC_STACK:
  304. ir_emit_memcpy(ir, offset, irs->stack, irs->size);
  305. break;
  306. default:
  307. assert(0);
  308. }
  309. }
  310. void ir_emit_sym_to_sym(struct ir *ir, struct sym *dst, struct sym *src)
  311. {
  312. switch (dst->irs.loc) {
  313. case LOC_REG:
  314. ir_emit_sym_to_reg(ir, dst->irs.reg, src);
  315. break;
  316. case LOC_STACK:
  317. ir_emit_sym_to_stack(ir, dst->irs.stack, src);
  318. break;
  319. default:
  320. assert(0);
  321. break;
  322. }
  323. }
  324. void ir_emit_read_to_sym(struct ir *ir, struct sym *dst, uint16_t src)
  325. {
  326. struct irstate *irs = &dst->irs;
  327. assert(irs->loc == LOC_STACK);
  328. ir_emit_insn(ir, MOV, BPF_REG_1, BPF_REG_BP);
  329. ir_emit_insn(ir, ALU_IMM(BPF_ADD, irs->stack), BPF_REG_1, 0);
  330. ir_emit_insn(ir, MOV_IMM((int32_t)irs->size), BPF_REG_2, 0);
  331. if (src != BPF_REG_3)
  332. ir_emit_insn(ir, MOV, BPF_REG_3, src);
  333. ir_emit_insn(ir, CALL(BPF_FUNC_probe_read), 0, 0);
  334. /* TODO if (r0) exit(r0); */
  335. }
  336. void ir_emit_memcpy(struct ir *ir, ssize_t dst, ssize_t src, size_t size)
  337. {
  338. if (dst == src)
  339. return;
  340. for (; size >= 8; size -= 8, dst += 8, src += 8) {
  341. ir_emit_insn(ir, LDX(BPF_DW, src), BPF_REG_0, BPF_REG_BP);
  342. ir_emit_insn(ir, STX(BPF_DW, dst), BPF_REG_BP, BPF_REG_0);
  343. }
  344. if (size >= 4) {
  345. ir_emit_insn(ir, LDX(BPF_W, src), BPF_REG_0, BPF_REG_BP);
  346. ir_emit_insn(ir, STX(BPF_W, dst), BPF_REG_BP, BPF_REG_0);
  347. size -= 4, dst += 4, src += 4;
  348. }
  349. if (size >= 2) {
  350. ir_emit_insn(ir, LDX(BPF_H, src), BPF_REG_0, BPF_REG_BP);
  351. ir_emit_insn(ir, STX(BPF_H, dst), BPF_REG_BP, BPF_REG_0);
  352. size -= 2, dst += 2, src += 2;
  353. }
  354. if (size >= 1) {
  355. ir_emit_insn(ir, LDX(BPF_B, src), BPF_REG_0, BPF_REG_BP);
  356. ir_emit_insn(ir, STX(BPF_B, dst), BPF_REG_BP, BPF_REG_0);
  357. size -= 1, dst += 1, src += 1;
  358. }
  359. assert(size == 0);
  360. }
  361. void ir_emit_bzero(struct ir *ir, ssize_t offset, size_t size)
  362. {
  363. for (; size >= 8; size -= 8)
  364. ir_emit_insn(ir, ST_IMM(BPF_DW, offset, 0), BPF_REG_BP, 0);
  365. if (size >= 4) {
  366. ir_emit_insn(ir, ST_IMM(BPF_W, offset, 0), BPF_REG_BP, 0);
  367. size -= 4;
  368. }
  369. if (size >= 2) {
  370. ir_emit_insn(ir, ST_IMM(BPF_H, offset, 0), BPF_REG_BP, 0);
  371. size -= 2;
  372. }
  373. if (size >= 1) {
  374. ir_emit_insn(ir, ST_IMM(BPF_B, offset, 0), BPF_REG_BP, 0);
  375. size -= 1;
  376. }
  377. assert(size == 0);
  378. }
  379. int16_t ir_alloc_label (struct ir *ir)
  380. {
  381. return ir->next_label--;
  382. }
  383. uint16_t ir_alloc_register(struct ir *ir)
  384. {
  385. return ir->next_reg++;
  386. }
  387. ssize_t ir_alloc_stack(struct ir *ir, size_t size, size_t align)
  388. {
  389. ir->sp -= size;
  390. if (ir->sp % align)
  391. ir->sp -= align - (ir->sp & align);
  392. assert(ir->sp > INT16_MIN);
  393. return ir->sp;
  394. }
  395. void ir_init_irs(struct ir *ir, struct irstate *irs, struct type *t)
  396. {
  397. t = type_base(t);
  398. if (irs->loc)
  399. return;
  400. irs->size = type_sizeof(t);
  401. if ((!irs->hint.stack)
  402. && ((t->ttype == T_SCALAR) || (t->ttype == T_POINTER))) {
  403. irs->loc = LOC_REG;
  404. irs->reg = ir_alloc_register(ir);
  405. return;
  406. }
  407. irs->loc = LOC_STACK;
  408. /* a parent may already have filled in a stack position.
  409. * usually this is when we're part of a map key. */
  410. if (!irs->stack)
  411. irs->stack = ir_alloc_stack(ir, irs->size, type_alignof(t));
  412. }
  413. void ir_init_sym(struct ir *ir, struct sym *sym)
  414. {
  415. return ir_init_irs(ir, &sym->irs, sym->type);
  416. }
  417. struct ir *ir_new(void)
  418. {
  419. struct ir *ir;
  420. ir = calloc(1, sizeof(*ir));
  421. assert(ir);
  422. ir->next_reg = vreg_base;
  423. ir->next_label = -1;
  424. return ir;
  425. }
  426. static void ir_bpf_vreg_replace(struct ir *ir, struct vinsn *last, int reg)
  427. {
  428. struct vinsn *vi;
  429. _d("ir_bpf_generate: v%d -> r%d\n", last->insn.src & ~vreg_base, reg);
  430. for (vi = ir->vi; vi <= last; vi++) {
  431. if (vi->vitype != VI_INSN)
  432. continue;
  433. if (vi->insn.dst == last->insn.src)
  434. vi->insn.dst = reg;
  435. if (vi->insn.src == last->insn.src)
  436. vi->insn.src = reg;
  437. }
  438. }
  439. int ir_bpf_registerize_one(struct ir *ir, struct vinsn *last)
  440. {
  441. struct vinsn *vi;
  442. uint16_t clean = 0x3ff;
  443. for (vi = ir->vi; clean && (vi < last); vi++) {
  444. if (vi->vitype != VI_INSN)
  445. continue;
  446. if (!(vi->insn.src & vreg_base))
  447. clean &= ~(1 << vi->insn.src);
  448. if (!(vi->insn.dst & vreg_base))
  449. clean &= ~(1 << vi->insn.dst);
  450. if (vi->insn.bpf.code == (BPF_JMP | BPF_CALL))
  451. clean &= ~BPF_REG_CALLER_SAVE;
  452. }
  453. if (clean) {
  454. int reg;
  455. for (reg = BPF_REG_0; !(clean & 1); clean >>= 1, reg++);
  456. ir_bpf_vreg_replace(ir, last, reg);
  457. return 0;
  458. }
  459. /* TODO ir_bpf_vreg_spill(ir, last); */
  460. return -1;
  461. }
  462. int ir_bpf_registerize(struct ir *ir)
  463. {
  464. struct vinsn *vi;
  465. int err = 0;
  466. if (!ir->len)
  467. return 0;
  468. for (vi = &ir->vi[ir->len - 1]; vi >= ir->vi; vi--) {
  469. if (vi->vitype != VI_INSN)
  470. continue;
  471. if (vi->insn.src & vreg_base) {
  472. err = ir_bpf_registerize_one(ir, vi);
  473. if (err)
  474. return err;
  475. }
  476. }
  477. return err;
  478. }
  479. int ir_bpf_generate(struct ir *ir)
  480. {
  481. int err;
  482. err = ir_bpf_registerize(ir);
  483. if (err)
  484. return err;
  485. return 0;
  486. }